Bmi-1-targeting suppresses osteosarcoma aggressiveness through the NF-κB signaling pathway
نویسندگان
چکیده
Bone cancer is one of the most lethal malignancies and the specific causes of tumor initiation are not well understood. B‑cell‑specific Moloney murine leukemia virus integration site 1 protein (Bmi‑1) has been reported to be associated with the initiation and progression of osteosarcoma, and as a prognostic indicator in the clinic. In the current study, a full‑length antibody targeting Bmi‑1 (AbBmi‑1) was produced and the preclinical value of Bmi‑1‑targeted therapy was evaluated in bone carcinoma cells and tumor xenograft mice. The results indicated that the Bmi‑1 expression level was markedly upregulated in bone cancer cell lines, and inhibition of Bmi‑1 by AbBmi‑1 reduced the invasiveness and migration of osteosarcoma cells. Overexpression of Bmi‑1 promoted proliferation and angiogenesis, and increased apoptosis resistance induced by cisplatin via the nuclear factor‑κB (NF‑κB) signal pathway. In addition, AbBmi‑1 treatment inhibited the tumorigenicity of osteosarcoma cells in vivo. Furthermore, AbBmi‑1 blocked NF‑κB signaling and reduced MMP‑9 expression. Furthermore, Bmi‑1 promoted osteosarcoma tumor growth, whereas AbBmi‑1 significantly inhibited osteosarcoma tumor growth in vitro and in vivo. Notably, AbBmi‑1 decreased the percentages of Ki67‑positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling‑positive cells in tumors compared with Bmi‑1‑treated and PBS controls. Notably, MMP‑9 and NF‑κB expression were downregulated by treatment with AbBmi‑1 in MG‑63 osteosarcoma cells. In conclusion, the data provides evidence that AbBmi‑1 inhibited the progression of osteosarcoma, suggesting that AbBmi‑1 may be a novel anti‑cancer agent through the inhibition of Bmi‑1 via activating the NF‑κB pathway in osteosarcoma.
منابع مشابه
P133: Targeting NF-Κb Signaling Pathway as Potential Therapeutic with Curcumin in Treatment of Multiple Sclerosis
Curcumin is active component of turmeric and isolated from the rhizome of turmeric, a phenolic natural product. One of inflammatory disease is multiple sclerosis, a multifocal chronic autoimmune inflammatory disease of the CNS, which is also known as a perivascular demyelinating disease. Studies have been shown that neuro-inflammation can have both harmful and beneficial effects on the neuronal...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملTarget therapy of TRIM-14 inhibits osteosarcoma aggressiveness through the nuclear factor-κB signaling pathway
Osteosarcoma is the most common cause of cancer-associated mortality and the prognosis is yet to be fully elucidated due to the paucity of effective therapeutic targets that significantly influence the quality of life and mean survival rates of patients with osteosarcoma. Studies have showed that tripartite motif-containing (TRIM)-14 is a member of the TRIM protein family that has a vital role ...
متن کاملThe Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer
Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...
متن کاملInhibition of fatty acid synthase suppresses osteosarcoma cell invasion and migration via downregulation of the PI3K/Akt signaling pathway in vitro.
In the present study, the effect of fatty acid synthase (FASN) inhibition on cell invasion and migration in vitro was investigated. A recombinant plasmid containing a microRNA targeting the FASN gene was used to inhibit FASN expression in U2‑OS cells. Cell migration and invasion were investigated using wound healing and Transwell invasion assays. We found that cell invasion and migration were s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017